Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein.

نویسندگان

  • Thomas Heuser
  • Cynthia F Barber
  • Jianfeng Lin
  • Jeremy Krell
  • Matthew Rebesco
  • Mary E Porter
  • Daniela Nicastro
چکیده

Cilia and flagella are highly conserved motile and sensory organelles in eukaryotes, and defects in ciliary assembly and motility cause many ciliopathies. The two-headed I1 inner arm dynein is a critical regulator of ciliary and flagellar beating. To understand I1 architecture and function better, we analyzed the 3D structure and composition of the I1 dynein in Chlamydomonas axonemes by cryoelectron tomography and subtomogram averaging. Our data revealed several connections from the I1 dynein to neighboring structures that are likely to be important for assembly and/or regulation, including a tether linking one I1 motor domain to the doublet microtubule and doublet-specific differences potentially contributing to the asymmetrical distribution of dynein activity required for ciliary beating. We also imaged three I1 mutants and analyzed their polypeptide composition using 2D gel-based proteomics. Structural and biochemical comparisons revealed the likely location of the regulatory IC138 phosphoprotein and its associated subcomplex. Overall, our studies demonstrate that I1 dynein is connected to multiple structures within the axoneme, and therefore ideally positioned to integrate signals that regulate ciliary motility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One of the Nine Doublet Microtubules of Eukaryotic Flagella Exhibits Unique and Partially Conserved Structures

The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets re...

متن کامل

The Mr 140,000 intermediate chain of Chlamydomonas flagellar inner arm dynein is a WD-repeat protein implicated in dynein arm anchoring.

Previous structural and biochemical studies have revealed that the inner arm dynein I1 is targeted and anchored to a unique site located proximal to the first radial spoke in each 96-nm axoneme repeat on flagellar doublet microtubules. To determine whether intermediate chains mediate the positioning and docking of dynein complexes, we cloned and characterized the 140-kDa intermediate chain (IC1...

متن کامل

Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme

Understanding the molecular architecture of the flagellum is crucial to elucidate the bending mechanism produced by this complex organelle. The current known structure of the flagellum has not yet been fully correlated with the complex composition and localization of flagellar components. Using cryoelectron tomography and subtomogram averaging while distinguishing each one of the nine outer dou...

متن کامل

The bop2-1 mutation reveals radial asymmetry in the inner dynein arm region of Chlamydomonas reinhardtii

Strains of Chlamydomonas reinhardtii with a mutant allele at the BOP2 locus swim slowly and have an abnormal flagellar waveform similar to previously identified strains with defects in the inner arm region. Double mutant strains with the bop2-1 allele and any of 17 different mutations that affect the dynein arm region swim more slowly than either parent, which suggests that the bop2-1 mutation ...

متن کامل

The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility

Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 30  شماره 

صفحات  -

تاریخ انتشار 2012